Search results for "OPTICAL GAIN"
showing 8 items of 8 documents
Carrier-induced quenching processes on the erbium luminescence in silicon nanocluster devices
2006
The luminescence-quenching processes limiting quantum efficiency in Er-doped silicon nanocluster light-emitting devices are investigated and identified. It is found that carrier injection, while needed to excite Er ions through electron-hole recombination, at the same time produces an efficient nonradiative Auger deexcitation with trapped carriers. This phenomenon is studied in detail and, on the basis of its understanding, we propose device structures in which sequential injection of electrons and holes can improve quantum efficiency by avoiding Auger processes. © 2006 The American Physical Society.
Polymer-metal plasmonic waveguide : passive and active components for integrated photonics
2009
Dielectric loaded surface plasmon polariton waveguides (DLSPPWs) enable transmission at a sub-wavelength scale of both electrical and plasmonic (optical waves at the interface between a metal and a dielectric) signals in the same circuitry. Moreover, the use of a polymer as the dielectric load enables the functionalization of DLSPPWs. Therefore, this configuration is of great interest for integrated photonic applications. However, DLSPPWs suffer strong losses due to dissipation into the metal film. We address here the possibility of compensating the losses using a configuration analogous to an optical amplifier. We first set theoretical (effective index model), numerical (differential metho…
Gain Dynamics after Ultrashort Pulse Trains in Quantum Dot based Semiconductor Optical Amplifiers
2007
We study the gain dynamics in QD-based SOAs after excitation with fs-pulse trains of up to THz repetition rates. A complete ground-state gain recovery is found for 200 GHz repetition rates and injection currents around 90 mA.
Optoelectronic devices based on caesium lead halide perovskite nanocrystals
2020
Tradicionalmente, la implementación de materiales activos en circuitos fotónicos integrados se ha basado en la utilización de semiconductores III-V y vidrios y materiales ferroeléctricos dopados con iones de tierras raras. Sin embargo, en la actualidad existe una alternativa basada en (nano) materiales sintetizados por técnicas de química coloidal. La posibilidad de procesar nanomateriales en solución permite fabricar semiconductores con propiedades ópticas (emisión, absorción, dispersión de luz) que pueden diseñarse durante la síntesis. Además, su naturaleza coloidal permite integrarlas en cualquier arquitectura óptica mediante sencillas técnicas de impresión en tinta. En este contexto, lo…
Optimization of semiconductor halide perovskite layers to implement waveguide amplifiers
2017
Semiconductor organometallic halide (CH 3 NH 3 PbX 3 , X=Cl, Br, I) perovskites (HPVK) have been emerged as a potential gain media to construct a new generation of active photonic devices. Indeed, during the last three years a significant effort has been carried out to implement HPVK-based optical amplifiers or lasers with improved quality factors. In particular, minimization of the threshold of stimulated emission has been an important concern to decrease the power consumption, and hence to enhance the performances of the device. For this purpose strategies include a suitable integration of the semiconductor in a photonic structure, or the optimization of the material. Here we propose a no…
Halide perovskite amplifiers integrated in polymer waveguides
2016
Semiconductor organometallic halide perovskites (CH 3 NH 3 PbX 3 , X=Cl, Br, I) (HPVK) have emerged as a new promising material able to improve the optoelectronic technology performance. Although this material has mostly been applied to improve the efficiency of photovoltaic devices, it also shows amazing properties for photonic applications. In particular, HPVK exhibits high photoluminescence (PL) quantum yield (up to 70%) at room temperature together with a tunable band-gap controlled by its chemical composition. In addition, since HPVKs is deposited in solution at room conditions, it can be easily incorporated in different photonic structures to efficiently exploit its emission propertie…
Multi-longitudinal mode emission in a bidirectional laser model
2011
Multi-longitudinal mode emission is a fundamental issue in laser physics. Interestingly enough, the mechanisms responsible for the transition from single- to multi-longitudinal mode emission have not been completely clarified yet. For example, it is well known that in unidirectional ring lasers the Rabi splitting of the lasing transition can lead to multimode emission even in a homogeneously broadened medium, the so called Risken-Nummedal—Graham-Haken instability (RNGHI) [1]. In spite of being known since the late sixties, only in the recent years a couple of experiments have demonstrated “dressed” versions of the RNGHI [2], i.e., up to day there are not clear demonstrations of this basic m…
Parabolic pulse generation with active or passive dispersion decreasing optical fibers
2007
International audience; We experimentally demonstrate the possibility to generate parabolic pulses via a single dispersion decreasing optical fiber with normal dispersion. We numerically and experimentally investigate the influence of the dispersion profile, and we show that a hybrid configuration combining dispersion decrease and gain has several benefits on the parabolic generated pulses.